
Journal of Computational Physics 228 (2009) 5280–5297
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Nondissipative and energy-stable high-order finite-difference interface
schemes for 2-D patch-refined grids

R.M.J. Kramer a,*, C. Pantano b, D.I. Pullin a

a Graduate Aeronautical Laboratories, California Institute of Technology, MC 205-45, Pasadena, CA 91125, United States
b Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States

a r t i c l e i n f o
Article history:
Received 27 May 2008
Received in revised form 3 April 2009
Accepted 8 April 2009
Available online 22 April 2009

Keywords:
High-order finite difference
Mesh interface
Stable stencil
Adaptive mesh refinement
Summation by parts
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.04.010

* Corresponding author. Tel.: +1 626 395 4747.
E-mail address: rmjk@caltech.edu (R.M.J. Krame
a b s t r a c t

A class of finite-difference interface schemes suitable for two-dimensional cell-centered
grids with patch-refinement and step-changes in resolution is presented. Grids of this type
are generated by adaptive mesh refinement methods according to resolution needs dic-
tated by the physics of the problem being modeled. For these grids, coarse and fine nodes
are not aligned at the mesh interfaces, resulting in hanging nodes. Three distinct geome-
tries are identified at the interfaces of a domain with interior patch-refinement: edges, con-
cave corners and convex corners. Asymptotic stability in time of the numerical scheme is
achieved by imposing a summation-by-parts condition on the interface closure, which is
thus also nondissipative. Interface stencils corresponding to an explicit fourth-order
finite-difference scheme are presented for each geometry. To preserve stability, a reduction
in local accuracy is required at the corner geometries. It is also found that no second-order
accurate solution exists that satisfies the summation-by-parts condition. Tests using the 2-
D scalar advection equation and an inviscid compressible vortex support the stability and
accuracy of these stencils for both linear and nonlinear problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Adaptive mesh refinement (AMR) methods are increasingly applied to fluid dynamics and other physical problems, where
the ability to locally refine the computational grid allows efficient resolution of features involving a wide range of length
scales. However, for a given truncation error, high-order uniform-grid methods can be more efficient computationally than
the usual second-order AMR [1,2], owing to gains realized by the simplicity of the data structures. High-order AMR offers
potentially the best of both worlds if stable closures at refinement interfaces are available. In this paper, the focus is primar-
ily on problems of hyperbolic type, i.e., with a strong wave propagation character.

A mathematical challenge for AMR methods is proper treatment of interfaces where there is a step-change in grid reso-
lution. The method of Berger and Colella [3] uses a computationally efficient interpolation/restriction operation to transfer
information between levels of a refinement hierarchy. Examples of utilization of this idea in second-order accurate approx-
imations are abundant [3–5]. Unfortunately, this technique cannot be extended easily to higher-order accuracy, while still
preserving stability.

High-order closures for one-dimensional step-changes in resolution are discussed in more detail in [6]. For two-dimen-
sional meshes, interface closures have been constructed by enforcing Lax stability in a linear scalar advection equation model
[7,8]. This approach suffers from dissipation introduced at the interface to stabilize the closure and by the fact that stability is
ensured in general only for waves traveling along specific directions. This is a serious limitation when dealing with systems
. All rights reserved.
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of partial differential equations like the compressible Euler equations of fluid mechanics, which support waves traveling in
multiple directions simultaneously. Moreover, many hyperbolic problems have features sensitive to numerical dissipation,
including turbulence and wave-propagation, and there is a need for a more advanced interface treatment that does not in-
volve numerical dissipation.

As pointed out by Trefethen [9], global stability criteria are necessary to ensure that local stability is preserved in the pres-
ence of multiple interfaces, since local criteria do not capture interactions between interfaces. Energy-stable methods are
preferred for this reason, and for a number of other advantages mentioned in [6]. The global stability property may be
imbedded in finite-difference methods by preserving the summation-by-parts (SBP) property of the differential equation.
First proposed by Kreiss and Scherer [10], this has been shown [11,12] to impart global stability by the formal GKS definition
of Gustafsson et al. [13] and to be asymptotically stable in time when the boundary condition is implemented by the simul-
taneous approximation term (SAT) technique. Both definitions of stability must be satisfied to prevent nonphysical growth of
the numerical solution in hyperbolic problems [14]. This approach also ensures that stability extends to nonlinear problems
and systems of equations [11].

The focus of development of SBP operators has been primarily on boundary schemes. For grid interfaces, Nordström and
Carpenter [15] propose a high-order method that uses a penalty-type technique to match the function value and first deriv-
ative at a common interface point. This assumes a vertex-type mesh, compared to the cell-centered finite volume-type mesh
topology considered in this work that avoids overlapping nodes under refinement. The penalty method introduces some
numerical dissipation, but has been applied successfully to fluid dynamics and electromagnetic problems where this effect
was found to be small [16].

An alternative interface formulation is described in [6]. In this case, a customized stencil that satisfies the SBP property is
developed for the nodes near an interface in a manner similar to the boundary stencils of Strand [17] and Carpenter et al.
[11]. These nondissipative high-order schemes are shown to be energy-stable, but apply only to interfaces that are essen-
tially one-dimensional in character. The same methodology is used in this work to extend the previous result to fully
two-dimensional patch-refined grids. In the present case, the focus is on satisfying the stability criteria such that a truly
two-dimensional SBP property is enforced throughout the domain. It is found that this has a cost in local accuracy at refine-
ment corners. To our knowledge, no scheme enforcing the SBP property across grid interfaces in this way has been published
for any order of accuracy.

In Section 2 the geometry of the patch-refined grid is defined, followed in Section 3 by the SBP formulation of the first-
derivative operators. The interface stability criteria results from a more general condition for stability of the semidiscrete
linear advection equation, and is used to generate the interface schemes presented in Section 4. Numerical tests of these
schemes follow in Section 5.
2. Two-dimensional patch refinement

2.1. Definition of the grid

The starting point is the two-dimensional Cauchy problem, the scalar advection equation
@u
@t
þ a

@u
@x
þ b

@u
@y
¼ 0; ðx; yÞ 2 X; t P 0; ð1Þ
where a square domain X ¼ fðx; yÞ 2 ½0;1� � ½0;1�g is chosen for simplicity, with initial condition uðx; y;0Þ ¼ u0ðx; yÞ and
boundary conditions (for a > 0 and b > 0),
uð0; y; tÞ ¼ gxðy; tÞ; t P 0; ð2Þ
uðx;0; tÞ ¼ gyðx; tÞ; t P 0: ð3Þ
The numerical solution to this problem is sought on a node-based finite-volume partition of the domain, chosen over a ver-
tex-based discretization because of its wide use in adaptive mesh refinement methods [3,5]. Certain regions of this domain
are locally refined relative to the original discretization; first, we define the nature of this refinement.

Consider a uniform discretization of the domain X into computational cells of size Dx� Dy, with Dx ¼ 1=N and Dy ¼ 1=M.
Under local refinement, X is partitioned into two subdomains by X ¼ Xf [Xc , where the fine region is a block of refined cells
defined by
Xf � fðx; yÞ 2 ½nLDx;nHDx� � ½mLDy;mHDy�g;
with 0 < nL < nH < N;0 < mL < mH < M and ðnL;nH;mL;mHÞ 2 N. The fine region thus occupies an interior part of X, with
each edge extending over an integer number of coarse cells. Note that in general, Xf may include a number of such refined
blocks of cells. Within Xf , the discretization is refined by ratios rx and ry in the x- and y-directions, respectively, for compu-
tational cells of size ðDx=rxÞ � ðDy=ryÞ. It is generally required that 1 < rx; ry 2 N. Additional resolution is thus provided for
the problem in Xf . The remaining coarse region Xc ¼ X nXf , has the original cell dimensions. A sketch of such a partition
is shown in Fig. 1. Dirichlet boundary conditions (2) and (3) are imposed on CD � fðx; yÞ 2 ð½0;1� � 0Þ [ ð0� ½0;1�Þg, where
@X ¼ CD þ CN . Note that this partitioning of the domain does not affect the equations or boundary conditions.



Fig. 1. Sketch of the domain X, showing a partition into a fine region Xf (shaded) and coarse region Xc .
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A numerical method to solve (1) is constructed by approximation of uðx; y; tÞ ¼ ucðx; y; tÞ þ uf ðx; y; tÞ, where uc and uf are
the partitions of u to Xc and Xf , respectively. Locating nodes at the cell centers in each subdomain, u is discretized such that
ucðxI; yJ; tÞ � uc

I;JðtÞ, where xI ¼ DxðI � 1=2Þ and yJ ¼ DyðJ � 1=2Þ, over the index set
Fig. 2.
I c ¼ fðI; JÞ 2 ½1;N� � ½1;M� n ½nL þ 1; nH� � ½mL þ 1;mH�g;
and uf ðxi; yj; tÞ � uf
i;jðtÞ, where xi ¼ DxðnL þ ði� 1=2Þ=rxÞ and yj ¼ DyðmL þ ðj� 1=2Þ=ryÞ, over the index set
I f ¼ fði; jÞ 2 ½1; ðnH � nLÞrx� � ½1; ðmH �mLÞry�g;
where the complete index set I ¼ I c [ I f . Let u ¼ fuc
I;J ;u

f
i;jg ¼ fuI g denote the discrete approximation to u at the nodes I; no

particular ordering of the index set is implied. The resulting approximation of (1) yields a system of ordinary differential
equations, which are integrated numerically in time using an appropriate time-integration method, e.g., Runge–Kutta.

2.2. Interface types

The present objective is to develop an explicit finite-difference scheme of the two-dimensional domain with a cell-cen-
tered mesh. Approximation of the first derivative at interior cells, away from the interface at @Xf , is accomplished using stan-
dard centered finite-difference techniques. Near @Xf , there are two prevailing approaches to dealing with the irregular node
locations at the interface. The first solves (1) as separate problems on each subdomain Xc and Xf , using a compatibility con-
dition to transfer information between subdomains. This compatibility condition can be viewed as an addition to the original
problem. Examples of this approach include [15,18,19]. The second approach, similar to [6], solves (1) on the full domain,
assuming that a continuous and differentiable function uðx; y; tÞ exists and is well defined across the grid interfaces. This
leaves the problem of the change in resolution to be resolved by the numerical method, where special stencils are required
to approximate the spatial derivative in the vicinity of @Xf . This is the approach considered for this work.

The historical difficulty encountered with this approach is the appearance of ‘‘hanging nodes” at the grid interface, as
nodes do not align with Cartesian lines passing through the cell centers on each side. This problem has made achieving
simultaneous high-order accuracy and long-time stability of the interface closure difficult, and is addressed in this work.
Our previous work [6] addressed the interface problem only for one-dimensional geometries.

A consequence of the hanging-node geometry is a strong dependence of the interface closure on the refinement ratio.
Fig. 2(a) shows an interface with a refinement factor of 2 in each direction, where an interface stencil for the coarse node
would include dependence on four fine nodes, whereas in Fig. 2(b), with a factor 4 refinement, the same node is now depen-
dent on 16 fine nodes in an equivalent area. In general, this means that an interface stencil cannot have a simple functional
(a) (b)

The topology of an interface is dependent on the refinement factor: (a) refinement factor 2 in each direction, (b) refinement factor 4 in each direction.
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dependence on rx or ry in the way that the one-dimensional scheme could, cf. [6]. We therefore fix the refinement ratios at
rx ¼ ry ¼ 2 from this point forward, but this presentation may be followed for any integer refinement ratio (without guar-
antee that a solution exists).

For a general refined region Xf , three basic interfaces may be identified, each with a unique topology. These are sketched
in Fig. 3: (a) shows the edge interface, corresponding to the Cartesian edges of @Xf where the change in discretization is
essentially in one direction only; (b) shows the convex corner interface, where two edges meet at a corner of @Xf that is con-
vex relative to Xf ; and (c) shows the concave corner interface, where the corner is concave relative to the fine region. Other
more complex interfaces may be devised, but these three elements are sufficient to build in a domain any arbitrarily refined
interior region satisfying simple rules regarding its size such that each interface geometry remains distinct. Multiple levels of
refinement, obtained by embedding additionally refined subdomains within Xf , present no additional closure problems, as
the interface geometries are logically identical to those shown.

3. Formulation and stability

3.1. One-dimensional SBP formulation

The 1-D summation-by-parts operator is defined for the 1-D version of the advection equation
Fig. 3
@u
@t
þ a

@u
@x
¼ 0; t P 0; ð4Þ
following [11,6], for a general approximation to the spatial derivative given by
P
du
dx
¼ 1

Dx
Qu; ð5Þ
where P ¼ fpijg and Q ¼ fqijg are matrices containing the coefficients of the stencil. An explicit finite-difference scheme is
used in the interior of the domain, where centered second- and fourth-order schemes are given by
duðxÞ
dx

� 1
Dx

1
2

uðxþ DxÞ � 1
2

uðx� DxÞ
� �

; ð6Þ
and
duðxÞ
dx

� 1
Dx

1
12

uðx� 2DxÞ � 2
3

uðx� DxÞ þ 2
3

uðxþ DxÞ � 1
12

uðxþ 2DxÞ
� �

; ð7Þ
respectively. P is a dense matrix at the boundaries and diagonal elsewhere. Boundary conditions are applied using the SAT
method [11] to give a semidiscrete approximation for (4)
P
du
dt
¼ � a

Dx
Quþ a

Dx
ssðu1 � gðtÞÞ; ð8Þ
where s is the penalty coefficient with s P 1 for stability, and
(a)

(b) (c)

. Sketches of the three principal interior interface geometries encountered in two-dimensions: (a) edge, (b) convex corner, (c) concave corner.
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s ¼ ½q11;0; . . . ;0�T : ð9Þ
Eq. (8) may be recast in the more convenient form
P
du
dt
¼ � a

Dx
eQ u� a

Dx
ssgðtÞ; ð10Þ
where
 eQ ¼ Q � s½s0 � � �0�: ð11Þ

The summation-by-parts property requires that:

1. P is symmetric positive definite, and
2. Q is anti-symmetric except at the corners, such that the matrix Q þ QT is the diagonal matrix diagð2q11;0; . . . ;0;2qNNÞ,

with q11 < 0 < qNN .

It is straightforward to show that these properties lead to an energy-stable discretization of the linear advection equation
[11,12].

3.2. Two-dimensional SBP formulation

For (1), the 1-D theory is extended in a manner analogous to that described by [12]. Define general 2-D finite-difference
approximations to the spatial derivatives on the entire domain X,
@u
@x
¼ 1

Dx
Dxu; ð12Þ

@u
@y
¼ 1

Dy
Dyu; ð13Þ
such that a projection v of the exact solution uðx; y; tÞ onto the 2-D grid satisfies
@v
@x
¼ 1

Dx
Dxv þ tx; ð14Þ

@v
@y
¼ 1

Dy
Dyv þ ty; ð15Þ
where tx and ty are the truncation errors in each direction. The discretization spacings Dx and Dy now represent the finest
length scale in each direction, following the convention of [6]. In this way, the scaling factor of the discretization for coarse
regions is incorporated into the coefficients of Dx and Dy. These finite-difference approximations, with the SAT boundary
implementation from [12], give a semidiscrete form of (1),
du
dt
¼ � a

Dx
Dx þ

b
Dy

Dy

� �
u� a

Dx
gx �

b
Dy

gy; ð16Þ
where the vectors gx and gy contain the contribution of the boundary conditions. To better understand the structure of the
finite-difference matrices in 2-D, see that on a uniform grid ðXf ¼ fgÞ, the matrices Dx and Dy are block diagonal, and may be
written explicitly as
Dx ¼

P�1 eQ
P�1 eQ

. .
.

P�1 eQ

2666664

3777775; gx ¼

P�1ssgx
1ðtÞ

P�1ssgx
2ðtÞ

..

.

P�1ssgx
NðtÞ

2666664

3777775;
where P; eQ ; s and s are all as defined in 1-D, and similarly in the y-direction by the appropriate transformation.
On a patch-refined grid, Dx and Dy will have this block-diagonal structure in uniform regions, but near interfaces a more

general form is required. For a grid with a total of N ¼ jIj nodes, there will be a subset of nodes, I i � I , of length n ¼ jI ij in
the vicinity of @Xf that require special interface stencils. These stencils depend on a larger subset of nodes, Id � I , of length
m ¼ jIdj > n (which will be different for each derivative). Thus Dx and Dy have potentially dense n�m submatrices over the
interface nodes I i � Id, which we label bDx and bDy, respectively.

These matrices are defined as general explicit finite difference approximations
@uk

@x
¼ 1

Dx

X
j2Idx

bDx;kjuj; ð17Þ

@uk

@y
¼ 1

Dy

X
j2Idy

bDy;kjuj; ð18Þ
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for all k 2 I i, where Dx and Dy are the discretization scales in the fine region. The formal order of each approximation is
determined by Taylor series expansion of the polynomial test function
Table 1
Test po

Derivat

0th ord
1st ord
2nd ord
3rd ord
4th ord
fðz1 ;z2Þðx; yÞ ¼ xz1 yz2 ; ð19Þ
to degree specified by the index pair ðz1; z2Þ, in the combinations shown in Table 1. For either (17) or (18) to be accurate to a
given order, all index pairs up to that order must be satisfied exactly: for a third order-accurate x-derivative, (17) must sat-
isfy all ten index pairs up to third-order. Both directions must be considered for each derivative because of the off-direction
perturbations introduced by the hanging-node geometry of the grid. Simple algebra will show that this does not result in a
cross-dependence on the discretizations; therefore, the x-derivative is independent of Dy and vice versa. Note that in order
for the discretization to preserve the global convergence rate of an interior scheme of order r, it is expected that the interface
schemes must be accurate to at least order ðr� 1Þ [20].

3.3. Error bound and stability criteria

The stability of (16) is examined in the context of a positive definite norm matrix H, such that for u 2 R,
kuk2
H ¼ ðu;HuÞ ¼ uT Hu > 0; ð20Þ
with the equivalence of the norms,
hlowerkek2
6 kek2

H 6 hupperkek2
: ð21Þ
The error analysis follows [12], with some modifications appropriate for our case. Writing (16) for the projection of the exact
solution, v,
dv
dt
¼ � a

Dx
Dx þ

b
Dy

Dy

� �
v � a

Dx
gx �

b
Dy

gy � atx � bty; ð22Þ
an equation for the error, e ¼ v � u, may be derived according to
de
dt
¼ � a

Dx
Dx þ

b
Dy

Dy

� �
eþ t; ð23Þ
where t ¼ �atx � bty contains the truncation error contributions from both directions. Taking the norm of this error in the
sense just defined gives
d
dt
kek2

H ¼ eT � a
Dx

Dx �
b
Dy

Dy

� �T

H þ H � a
Dx

Dx �
b
Dy

Dy

� �" #
eþ 2ðt;HeÞ: ð24Þ
Writing the term in square brackets as
A ¼ a
Dx

Dx þ
b
Dy

Dy

� �T

H þ H
a
Dx

Dx þ
b
Dy

Dy

� �
; ð25Þ
leads to
d
dt
kek2

H ¼ �eT Aeþ 2ðt;HeÞ: ð26Þ
It is assumed that A can be diagonalized according to
Axi ¼ kixi; ð27Þ
where ki and xi denote the eigenvalues and normalized eigenvectors of A, respectively. A positive definite matrix A, such that
eT Ae > 0 for all e–0, implies ReðkiÞ > 0. Expressing the error in this basis gives e ¼

P
xici, where ci denote scalar coefficients,

and leads to
lynomial index pairs ðz1; z2Þ for given derivative accuracy.

ive order Index pairs

er (0,0)
er (1,0), (0,1)
er (2,0), (0,2), (1,1)
er (3,0), (0,3), (2,1), (1,2)
er (4,0), (0,4), (3,1), (1,3), (2,2)
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�eT Ae ¼ �
X

c2
i ki 6 �kminkek2

6 � kmin

hupper
kek2

H; ð28Þ
where kmin ¼minðReðkiÞÞ. Using the Cauchy–Schwarz inequality, ðt;HeÞ 6 kekHktkH , the error rate
d
dt
kek2

H 6 �
kmin

hupper
kek2

H þ 2kekHktkH; ð29Þ
reduces to
d
dt
kekH 6 �

kmin

2hupper
kekH þ ktkH; ð30Þ
which may be integrated to give the error bound [12],
kekH 6
2hupper

kmin
sup
06s6t

ktðsÞkH

� �
1� e

� kmin t
2hupper

� �
: ð31Þ
In the case where A is only positive semidefinite, such that eT Ae P 0, the error bound is modified to become
kekH 6 sup
06s6t

ktðsÞkH

� �
t; ð32Þ
which can be interpreted, with some care, as the limit of (31) when kmin ! 0. This shows that the scheme converges for
t < þ1 and suffers at most a linear growth in error with time owing to truncation error, thus exhibiting Lax (finite time)
stability. To prove asymptotic stability requires a bound on ktðsÞkH for all time, which depends, in general, on the boundary
and initial data, as well as on the order of the approximation. A demonstration of asymptotic stability for two particular grids
is shown in Section 5.

The stability result depends on the condition
� a
Dx
ðHDx þ DT

x HÞ � b
Dy
ðHDy þ DT

y HÞ 6 0: ð33Þ
Notice that the norm H is as yet undefined, except by the fact that it must be a positive definite matrix. For the boundaries,
[12] proposes
Hb ¼ P1=2
x PyP1=2

x ; ð34Þ

where Hb spans the set of nodes Ib � I c in the vicinity of @X and Dx ¼ P�1

x Q x. This can be shown to satisfy (33) with a > 0 and
b > 0. In a patch-refined domain with uniform boundary regions, the familiar 1-D SBP boundary scheme may be used, e.g.,
from [6], and the 2-D matrices Px and Py may be formed directly from the explicitly known P of the boundary scheme.

At grid interfaces, stability should be independent of the advection velocities so that the closure may be applied to sys-
tems with waves traveling in arbitrary directions. In the case of a uniform domain, the interior makes no contribution to the
stability condition (33), and eT Ae is dependent only on the boundary closure. For the patch-refined domain, in order to have
the error bound (31) independent of the interface closure, this should remain true. This leads to the stronger conditions
bH bDx þ bDT

x
bH ¼ 0; ð35ÞbH bDy þ bDT

y
bH ¼ 0; ð36Þ
for the interface region, where bDx and bDy are defined by Eqs. (17) and (18). The positive definite matrix bH spans I i � I i, and is
common to both conditions. It is to be determined along with the elements of bDx and bDy when constructing the stencil.

We make the following remarks:

1. For symmetric bH, the equations are equivalent to requiring that the products bH bDx and bH bDy be antisymmetric matrices.
2. In the domain interior, away from interfaces and boundaries, I n ðI i [ IbÞ;Dx and Dy are naturally anti-symmetric by the

centered difference scheme, automatically satisfying (35) and (36).
3. The full-domain matrix H has Hb in boundary regions, bH in interface regions and is diagonal in interior regions. Since all

interior regions, including the interfaces, satisfy the stronger conditions (35) and (36), (33) holds throughout the domain
and the estimate (31) is preserved.

4. The criteria (35) and (36) are independent of the cell aspect ratio. Although the refinement factor is fixed for a particular
interface closure, any combination of Dx and Dy may be used.

5. The norm matrix bH is not necessary for computational implementation of the scheme, as it does not appear in (16), but it
is critical in the derivation of the interface stencils because it links the x- and y-derivatives in a way that ensures stability.

3.4. Conservation across interfaces

Conservation of the numerical method follows from the summation-by-parts condition [21]. For the general 2-D differ-
ential equation
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@u
@t
þ @f
@x
þ @g
@y
¼ 0; ð37Þ
where f ðuÞ and gðuÞ are arbitrary nonlinear functions, the weak form of the equation is given by
d
dt

Z
X

/udx�
Z

X
u
@/
@t
þ f

@/
@x
þ g

@/
@y

� �
dx ¼ 0; ð38Þ
where /ðx; y; tÞ is an arbitrary test function that vanishes at the boundaries. Discrete conservation follows if the numerical
approximation to (37) has a weak form similar to (38), indicating that the conservation law is preserved by the discretization
[21]. For the semidiscrete version of (37),
du
dt
þ Dxf þ Dyg ¼ 0; ð39Þ
multiplying by the vector UT H and simplifying using the properties of the SBP operators, we obtain
d
dt
ðuT HUÞ � uT H

dU
dt
þ fT HDxUþ gT HDyU

� �
¼ 0: ð40Þ
This is clearly the discrete version of (38), and asymptotically approaches it in the limit of infinite resolution. The numerical
solution therefore satisfies the weak form of the conservation law by the SBP condition, which by construction is unaffected
by the presence of grid interfaces.

4. Interface closures

4.1. Mapping of interface schemes

Before considering the individual interface stencils, it is important to understand how the interface elements of Fig. 3 may
be used to construct the interface scheme for an arbitrary domain. Consider the sketched edge and corner stencils of Fig. 4,
shown in their default orientation (described relative to the fine region). Throughout this section, it is more convenient to
map the global index set into a new, locally ordered set, I#I0. This local numbering is used to indicate the orientation of
the stencil and the relative position of each node. The particular mapping between the global set, I , and these local sets,
I0, depends on the global domain and constitutes an implementation issue.

Consider now a simple box refinement on a square grid, where the inner box is refined by a factor of two in each direction.
To define the complete interface scheme for this grid, the stencils of Fig. 4 must be mapped to the four edge interfaces and
four corner interfaces of this grid. There are two obvious mapping alternatives: reflection or rotation. In the former scheme,
the upper edge is mapped from the original right-hand edge by reflection in the line y ¼ x, and the remaining edges are ob-
tained by reflection in y ¼ �x. Examination of the corners, however, will reveal that the original upper-right corner cannot be
simply mapped to the upper-left or the lower-right corners. Using a counterclockwise rotation mapping, though, all the
geometries may be obtained from the original pair of Fig. 4, resulting in the numbering shown in Fig. 5. The original stencils
are shaded and the transformed orientations are boxed.

The final step is to map the particular x- and y-derivatives to the edges and corners. For this purpose, consider 90� rota-
tions of the derivatives, generating the sequence in Table 2, which shows how bDx and bDy in the original orientation are
mapped to the x- and y-derivatives in each of the other orientations. With this mapping scheme, one solution for each inter-
face type is sufficient for closure of the interfaces on an arbitrarily refined grid.

4.2. Interface scheme construction

Construction of the interface schemes has four steps:

1. Define interface matrices.
2. Form the accuracy equations from (17) and (18).
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Fig. 4. Cartoon representation of interface elements: (a) right-hand edge, (b) upper-right corner.
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Fig. 5. Box-refined grid, with interfaces mapped to each grid location.

Table 2
Transformations of the derivative matrices from the default orientation to other orientations by rotation.

Edge orientation Corner orientation x-Derivative y-Derivative

Right Upper right bDx
bDy

Upper Upper left �bDy
bDx

Left Lower left �bDx �bDy

Lower Lower right bDy �bDx
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3. Form the stability Eqs. (35) and (36).
4. Solve the resulting system of equations.

The interface matrices are defined from the interface node set I i and its dependence set Id (which includes the interface
nodes, and may not be the same for x- and y-derivatives). Dense n�mx matrix bDx, n�my matrix bDy, and n� n matrix bH
are assumed, the latter to contain the influence of the interface within Id. The accuracy equations are obtained from
(17)–(19), resulting in the linear system of equations
@fðz1 ;z2Þ

@x
ðxk; ykÞ ¼

1
Dx

X
j2Idx

bDx;kjfðz1 ;z2Þðxj; yjÞ; ð41Þ

@fðz1 ;z2Þ

@y
ðxk; ykÞ ¼

1
Dy

X
j2Idy

bDy;kjfðz1 ;z2Þðxj; yjÞ; ð42Þ
formed for each k 2 I i, where ðxk; ykÞ is the location of the node globally indexed by k. For third-order accuracy, Table 1
shows that there are ten equations for each k for each derivative. The stability equations are the elements of the m�m
matrices formed by the right-hand sides of (35) and (36). These are quadratic equations in the unknown elements ofbDx; bDy and bH. The resulting system of quadratic equations is solved for the elements of the interface matrices, which is done
numerically because of its very large size.

For a solution to exist at an interface, the norm H must have a specific form in the interior regions of the domain, where
(6) or (7) applies. Let Hc define the part of H that corresponds to coarse interior nodes in I c n ðI i [ IbÞ, and similarly let Hf

correspond to the fine interior part I f n I i. Then, we require
Hc ¼ diagð1Þ ¼ I; ð43Þ

Hf ¼ diag
1

rxry

� �
¼ 1

rxry
I; ð44Þ
i.e., H has 1 and 1=rxry on the diagonal in coarse and fine regions, respectively. A physical intuition exists for this result: the
norm, H, is effectively weighting the solution by the area occupied by each cell; for refinement ratios rx ¼ ry ¼ 2, four fine
cells occupy the same area and have the same weight as one coarse cell. The interface solutions presented next also fixed
the diagonal of bH to follow this scheme, although this is not essential to the existence of a solution.

For each of the following interface solutions, the particular difference matrices bDx and bDy used in Section 5 are too large to
print but are available in the supplementary material published online or from the editorial office. These are sufficient for
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implementation of the interface scheme. Row and column numbering of each matrix follows the local node numbering pre-
sented in Sections 4.3–4.5. Note that each of the following systems involve many degrees of freedom and in some cases these
solutions are not unique. Optimization of the solution families may be possible but has not been exhaustively investigated.

4.3. Edge interface

The edge interface is the simplest of the four interface geometries, and the default orientation is considered to be that
shown in Fig. 3(a). It is clear that a special difference stencil is required for the x-derivative as it passes through the interface,
but examination of the difference matrix for the y-derivative will show that it cannot satisfy (36) without a special stencil
too. With a five-point interior stencil, the interface region must include at least the first two nodes on either side of the
change in discretization. It was found that one additional point in each subrow was required in the refined region. Fig. 6
shows the fourth-order interface stencil thus derived, each interface node being formally third-order accurate. The dark-col-
ored nodes (numbered above each node 1–8) comprise the interface set I i for this stencil, and the gray nodes (together with
the interface nodes, the full set numbered below each node 1–30 for Dx and 1–24 for Dy) comprise the dependence set, Id.

For the x-derivative, the dependence set includes the natural extensions in the x-direction of the stencils for nodes 1, 2
and 8. These adjacent noninterface nodes (9–12 and 21–22 of Id) have the interior dependence on nodes 1–4 on the fine side,
and nodes 7 and 8 on the coarse side, linking the interface stencil to the interior regions. The y-derivative does not have a
natural dependence on those nodes, and since the accuracy conditions at the interface may be resolved entirely within the
stencil, its stencil has no need to include them. However, both stencils include dependence on the coarse rows above and
below the row of interest, the x-derivative stencil needing the additional nodes to satisfy the accuracy conditions in the
y-direction. The y-derivative at nodes 7 and 8 achieves third-order accuracy with essentially a three-point stencil in that
direction.

As the most basic of the interface geometries, the edge stencil is expected to tesselate along interface edges and to be
compatible with corner interfaces, as was assumed in Section 4.1. An arbitrary edge solution may not do either of these
things; of all the edge solutions that exist, only a subset will have compatible corner solutions and, therefore, be usable
(or useful) in practice. The solution presented here was derived simultaneously with the convex corner and corresponds
to one particular member of the family of solutions. An alternative formulation of the edge interface is presented in Appendix
A.

Alongside this fourth-order solution, variations with different interior schemes were also investigated, the critical condi-
tion for existence of a solution being that H has the interior form (43) and (44). A second-order edge solution (first-order at
the interface) permits a smaller interface set comprising only nodes 3–7 of I i from the fourth-order stencil because of the
smaller three-point interior stencil. Dependence on the adjacent coarse rows is still required. A rational solution is easily
found for this case, as bH has a particularly simple form. Similarly, a sixth-order solution exists that is fifth order at the inter-
face, with an appropriately larger stencil.

4.4. Convex corner interface

The corner interface turns out to be a challenging problem in the summation-by-parts context. To satisfy the stability
equations and thus ensure a stable and nondissipative interface treatment, a trade-off must be made that results in a loss
of local accuracy at the corner cells compared to the interior accuracy. We favor stability over local accuracy as no zero-dis-
sipation interface closures exist, and the SBP property has other desirable features that mitigate the local loss of accuracy. In
lieu of a formal proof, experimentation with stencil sizes and interior schemes yielded the results shown in Table 3: with a
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Fig. 6. Edge interface stencils for the fourth-order explicit scheme: (a) x-derivative, (b) y-derivative. Interface nodes are numbered 1–8 on each stencil and
the dependence sets 1–30 (x-derivative) and 1–24 (y-derivative).



Table 3
Maximum accuracy achievable at every corner interface node with an SBP formulation.

Interior order Edge order Corner order

Second First Zeroth
Fourth Third First
Sixth Fifth Second
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fourth-order interior scheme, the maximum accuracy achievable at every node in the stencil is just first order, though most
nodes can satisfy accuracy up to third order.

Parameterization of the interior difference stencils revealed that it is the order of the interior scheme rather than the par-
ticular coefficients that limits accuracy at the corner interface. For a centered five-point stencil with coefficients
ð�a;�b;0; b;aÞ, there is a family of second-order accurate solutions with b ¼ 1=2� 2a, and a special case of a ¼ �1=12 that
is fourth order. Leaving a as a parameter when solving the accuracy conditions at the corner, the maximum accuracy achiev-
able at all interface nodes is zeroth order, except in the special case of a ¼ �1=12, i.e. fourth order. Similarly with a seven-
point interior scheme: from the family of fourth-order stencils, only the special case of the sixth-order stencil gave a solution
that was at least second order everywhere.

For the fourth-order stencil shown in Fig. 7, two nodes of I i (14 and 15) are first order, three (8, 12 and 16) are second
order, and the remainder are third-order accurate. The dependence set includes the interface nodes (numbered 1–50). The
positions of the low-order nodes are not unique, but it is preferable to place them in the fine region where the truncation
error is minimized by the smaller discretization. The most serious consequence of this result is that average fourth-order
convergence can no longer be expected [20]; at worst, despite using a fourth-order interior scheme, only second-order con-
vergence could be seen. Note, however, that since there exists no usable second-order solution (a zeroth-order-accurate
derivative is meaningless), the fourth-order stencil represents the lowest-order interface solution that satisfies the stability
criteria.

The extent of the convex corner interface is determined primarily by the extent of the edge stencil. The inclusion of nodes
1 and 2 in the edge stencil demands that the corner span at least two coarse rows/columns, so nodes 2–16 of the corner must
be included to avoid any ambiguity in the stencils at those nodes. The differences between the x- and y-derivatives are lim-
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Fig. 7. Convex corner interface stencils for the fourth-order explicit scheme: (a) x-derivative, (b) y-derivative. Interface nodes are numbered 1–24 and the
dependence set nodes are numbered 1–50.
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ited to extensions of the stencils in the directions of the derivatives. Both stencils must be dependent on the adjacent edges
for compatibility (both below and to the left of the interface, nodes 1–8 and 43–50 of Id), but node 1 requires another two
nodes to its left ðxÞ or below ðyÞ. The x-derivative stencil includes the interior nodes to the right of coarse nodes 17–20 on
which they are naturally dependent (nodes 33–36); similarly, for the y-derivative, the coarse nodes above 21–24 are in-
cluded (nodes 39–42).

The corner stencil has dense 24� 50 derivative matrices bDx and bDy with many degrees of freedom, so again a family of
solutions exist. With the current edge stencil, the dependence set may be customized so that all nodes need not be depen-
dent on the full set. For example, nodes 17–20 need not be dependent on nodes 41–50, etc. The stencils may also be opti-
mized to reduce the truncation error at the low-order nodes.

It should be noted that there exists a second-order corner interface that is locally first order, which consequently could be
used as a meaningful derivative approximation. Unfortunately, this requires a modified stencil in the interior of the fine re-
gion: instead of the usual three-point second-order central difference scheme, the five-point second-order stencil with coef-
ficients ð�1=4;0;0;0;1=4Þ is needed, which has two serious deficiencies. First, the grid resolution is not truly refined, as this
modified stencil is equivalent to a staggered grid with the double (coarse) refinement, and second, multiple refinement with
this scheme is not possible. Multiple refinement is dependent on any interface appearing locally identical, regardless of its
refinement relative to a global scale. If the fine region requires a special stencil, then the same interface scheme cannot be
used again in a second refinement of that region, resulting in the loss of proper nesting of the AMR grid hierarchy.

4.5. Concave corner interface

The concave corner geometry suffers similar difficulties to those of the convex corner. Again, for a fourth-order interior
scheme, the maximum accuracy achievable at all nodes at the interface is first order. Fig. 8 shows the stencil thus derived,
with four first-order nodes (nodes 5, 6, 17 and 18) and two second-order nodes (11 and 23). Note that for both corners, these
first-order nodes do, in fact, satisfy the accuracy conditions for the second-order cross-derivative @2=@x@y in the Taylor series,
as it is the second derivatives (@2=@x2 and @2=@y2) that present the closure problem. Further, at the concave corner, node 6 is
second-order accurate in x in the x-derivative, and node 18 in y in the y-derivative. This arrangement of the low-order nodes
was chosen to ensure symmetry of the corner and minimize the error at these points as far as is possible.

Once again, the extent of the concave corner interface is determined by the edge scheme, the potential ambiguity here
occurring at the coarse nodes 25–28. The dependence set again includes the adjacent edge row/column (above and to the
left of the interface set, nodes 1–8 and 51–58 of Id) and the natural stencil extensions in the x- and y-directions. The large
28� 58 stencil is a consequence of this geometry being dominated by the fine region, but optimization and customization of
the dependence sets for each individual node of the stencil can potentially reduce the density of the derivative matrices
somewhat.
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Fig. 8. Concave corner interface stencils for the fourth-order explicit scheme: (a) x-derivative, (b) y-derivative. Interface nodes are numbered 1–28 and the
dependence set nodes are numbered 1–58.
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While the convex corner interface solution was obtained simultaneously with the edge interface to ensure compatibility,
it is not necessary to do the same with the concave corner: a solution was found using the previously derived edge solution.
This keeps each stencil derivation problem to a size that is feasible to solve on a modern desktop computer.

4.6. Refinement region topology

Having now defined the full set of interior interface stencils, it is clear that there are a few rules that must be imposed on a
refinement scheme such that only these stencils are required to close the interfaces. The basic principle is to avoid interfer-
ence between corners caused by overlapping dependence sets, such that the elements of HDþ DT H are the same as those in
(35) and (36) from the original definitions of the individual stencils. Thus in a refined region, any two corners must be sep-
arated by at least two coarse cells, and since each corner itself occupies two coarse cells in each direction, the minimum
length of any side of a refinement region is six coarse cells. Similarly, the minimum separation between two parallel refined
regions is eight coarse cells. For multiple levels of refinement, to preserve the independence of each interface, at least seven
intermediate cells are required between consecutive refinement interfaces.

Near boundaries, the dependence sets of the interface and boundary closures are permitted to overlap, because the con-
tribution of the boundary stencil to (35) and (36) will be the same as the interior stencil expected by the interface. For a four-
point boundary stencil with a six-point dependence set, the minimum separation between the domain boundary and an
interface is eight cells. With periodic boundary conditions, the interface may extend to the boundary as long as the refine-
ment scheme is periodic also.

5. Test examples

5.1. Advecting wave

For the first test example, consider the scalar advection Eq. (1) with a ¼ b ¼ 1, given by
@u
@t
þ @u
@x
þ @u
@y
¼ 0; ð45Þ

uð0; y; tÞ ¼ sin½xðy� 2tÞ�;
uðx; 0; tÞ ¼ sin½xðx� 2tÞ�;
uðx; y; 0Þ ¼ sin½xðxþ yÞ�;
with a frequency parameter x ¼ 2p. This has an analytic solution
uðx; y; tÞ ¼ sin½xðxþ y� 2tÞ�; ð46Þ
which is used to evaluate the accuracy of the numerical method.
To show that the interface schemes do possess the claimed stability properties, we examine the spectrum of the semidis-

crete form of (45),
du
dt
¼ � 1

Dx
Dx �

1
Dy

Dy

� �
u� gx

Dx
�

gy

Dy
: ð47Þ
Time stability of this equation (with Dx ¼ Dy) demands that the matrix ð�Dx � DyÞ have eigenvalues with nonpositive real
parts. This matrix has a structure strongly dependent on the grid and its refinement. Two refinement schemes are considered
to demonstrate by example that the interface schemes are stable. For the first case of a box refinement, the central third of
the domain is refined in each direction by the usual factor of two. The resulting grid has only edge and convex corner inter-
faces. The second grid of a cross refinement, has a ‘‘+”-shaped refined region in the center of the domain, which is three-fifths
the width and height of the domain and occupies one-fifth of the total area. It has eight convex corner interfaces and four
concave, with edges in between, providing a test of the three interface solutions together. Both are shown schematically in
Fig. 9.

For our demonstration, each grid is divided into blocks of eight coarse cells per side. The box refinement has three blocks
in each direction, resulting in a 24� 24 grid before refinement. The cross refinement has five blocks and a 40� 40 coarse
grid. With the refinements described, the grids have 768 and 2560 nodes, respectively. Fig. 10 shows the eigenvalues of
ð�Dx � DyÞ in each case, both using the fourth-order explicit boundary scheme from [6] and SAT parameter s ¼ 2 at the
boundary. Note that it is the presence of boundaries alone that results in the spectra having any nonzero real part; the equiv-
alent spectra for domains with periodic boundaries are purely imaginary. This is consistent with the assertion that the inter-
face schemes introduce no additional numerical dissipation.

Two features of Fig. 10 stand out. First, there appear to be a significant number of eigenvalues on or near the vertical axis.
Closer inspection reveals that the maximum real part in each example is very small Oð10�13Þ but still clearly nonpositive, so
the stability criteria is satisfied with all eigenvalues indeed lying in the left half plane. Second, the maximum imaginary part
is large relative to the minimum real part, especially compared to the spectrum for a similar uniform grid. This number
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Fig. 10. Spectra of the matrices ð�Dx � DyÞ for the test domains: (a) box refinement, (b) cross refinement. These include boundaries using the SAT scheme
with s ¼ 2.
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Fig. 9. Diagrams of the grids used for the validation problems: (a) box refinement, (b) cross/cross + box refinement. Shaded regions are refined by a factor of
two in each direction compared to the base grid and dashed lines indicate the division of the domain into blocks. The darker shaded region on (b) shows the
location of the second level of refinement for the cross + box grid.
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affects the stability limit of the time-marching scheme used to implement (45): for a third-order Runge–Kutta scheme (RK32
from [22]) and advection velocities a ¼ b ¼ 1, we find the time discretization limit (based on the refined scale Dx)
Dt / 0:16Dx: ð48Þ
This agrees with the stability limit observed in practice. Note that this limit may be extended by using a fourth-order Runge–
Kutta scheme, and is dependent on the value of s at the boundaries.

For the convergence study, a third grid with an additional level of refinement is considered. The cross + box refinement is
based on the cross refinement previously described, but with the middle quarters of the subblock at the center of the cross
refined in each direction (one quarter of its area), for a total refinement factor of 4 across the grid and demonstrating the
interface scheme across multiple levels of refinement. All simulations use the fourth-order interface schemes described in
Section 4. Table 4 shows the results from the convergence study on the cross and cross + box refinements, both run to a time
t ¼ 1 (two periods) with a CFL number of 1/8. The twice-refined grid is stable at this CFL when based on its finest grid scale.

It is immediately clear from these results that a fourth-order convergence rate is not achieved. Average convergence (in
the L2-norm) is approximately third order, but the point-wise L1-norm converges at closer to a second-order rate. This could
be expected with the presence of first-order nodes in the domain, but it appears that in the averaged sense, the rate is a little
better. Note that the number of first-order (and second-order) nodes is fixed, a function of the geometry of the refinement
rather than the resolution itself. In the convergence study on the cross refinement, there are 32 first-order points; at the
coarse resolution, this represents 1.25% of the grid, while at the finest resolution (coarse Dx ¼ 1=160) this is just 0.08%.

There is a computational payoff for the ability to refine the grid locally to mitigate the lost convergence rate and accuracy.
A simple comparison was made between the cross + box grid and a uniform grid of equivalent resolution. For the twice-re-



Table 4
Convergence results for the advection equation.

Coarse Dx Cross refinement Cross + box refinement

log10ðL2Þ Rate log10ðL1Þ Rate log10ðL2Þ Rate log10ðL1Þ Rate

1/40 �2:004 �1:173 �2:011 �1:060
1/60 �2:489 2.75 �1:584 2.34 �2:518 2.88 �1:314 1.44
1/80 �2:817 2.62 �1:791 1.65 �2:819 2.41 �1:609 2.37
1/120 �3:304 2.76 �2:145 2.01 �3:299 2.72 �2:109 2.84
1/160 �3:642 2.71 �2:350 1.64 �3:641 2.74 �2:403 2.36

Average rate 2.72 1.94 2.69 2.31
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fined grid, a coarse discretization of 1=40 gives Dx ¼ 1=160 in the most refined region and a total of 2752 nodes. The appro-
priate comparison is therefore to a uniform grid with that resolution having 25,600 nodes. In testing, without optimization of
the interface scheme implementation, the uniform grid took 10–13 times longer to reach t ¼ 1 with the same time step. This
offers some saving beyond the factor of 	 9:3 reduction in the problem size with the locally refined grid, despite the cost of
the matrix multiplication operations at interfaces.

5.2. Inviscid compressible vortex

For the second example, a nonlinear problem is considered to demonstrate more generally the stability of the interface
schemes. The dimensionless compressible Euler equations, with parameter b ¼ ðc� 1Þ=2,
@q
@t
þ @

@x
ðquÞ þ @

@y
ðqvÞ ¼ 0; ð49Þ

@

@t
ðquÞ þ @

@x
qu2 þ p

cM2
0

 !
þ @

@y
ðquvÞ ¼ 0; ð50Þ

@

@t
ðqvÞ þ @

@x
ðquvÞ þ @

@y
ðqv2 þ p

cM2
0

Þ ¼ 0; ð51Þ

@

@t
p

cM2
0

þ bqðu2 þ v2Þ
 !

þ @

@x
pu

M2
0

þ bquðu2 þ v2Þ
 !

þ @

@y
pv
M2

0

þ bqvðu2 þ v2Þ
 !

¼ 0; ð52Þ
are implemented with a normalization in terms of far-field values, q0 and p0, and a velocity scale, u0, which are incorporated
into the Mach number parameter, M0. An analytic solution exists for a constant-entropy (Lamb–Oseen) vortex with the tan-
gential velocity profile
uh

u0
¼ r0

r
1� e

�r2

r2
0

 !
; ð53Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and r0 is the core radius of the vortex. The corresponding pressure distribution is given by
p
p0
¼ 1� ðc� 1ÞM2

0
r2

0

2r2 1� e
�r2

r2
0

 !2

þ Ei �2
r2

r2
0

� �
� Ei � r2

r2
0

� �24 350@ 1A
c

c�1

; ð54Þ
where EiðzÞ is the exponential integral function, and the density is related to pressure by p=p0 ¼ ðq=q0Þ
c. Results are pre-

sented for c ¼ 1:4;M0 ¼ 1:2 and r0 ¼ 4=25.
The Lamb–Oseen vortex is preferred for this work over the more familiar Taylor vortex, despite having algebraic ð1=rÞ

rather than exponential decay of the core strength, because it is stable to axisymmetric perturbation while the Taylor vortex
is not. With the lack of numerical dissipation in these interface schemes, numerical error can provide sufficient perturbation
to induce this instability. Because of this algebraic decay, in order to keep the domain to a side length of 4, exact boundary
conditions are imposed using the analytic solution.

Both stationary and convecting vortex cases are considered, the latter having a convection velocity of (0.2,0.3) across the
domain. In both cases the vortex is initially located at the center of the domain, as shown in Fig. 11(a). Fig. 11(b) shows the
final location of the convecting vortex at time t ¼ 1. Dashed lines indicate the boundaries of the refined region for the box
refinement (a) and the cross + box refinement (b). These two grids, along with the cross refinement, are as described for the
advection problem, but scaled to the larger domain of this problem.

Table 5 shows the results of the convergence study with the convecting vortex. Here, a CFL number of 1/10 was used for
the cross grid and 1/12 for the cross + box grid. For the nonlinear problem, the same third-order average ðL2Þ convergence is
seen, while uniform convergence is similar or marginally better than the linear problem, nearing third order in some cases.
This confirms the observation that at least one order of convergence is lost from the interior scheme when corner interfaces
are present.



(a) (b)

Fig. 11. Contours of vorticity for the convecting Lamb–Oseen vortex: (a) initial vortex position, (b) final vortex position at t ¼ 1. Color scale is log10ðxÞ. Grid
interfaces are indicated by dashed lines, (a) showing box refinement interfaces, (b) showing cross + box refinement. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Convergence results for the convecting vortex problem.

Coarse Dx Cross refinement Cross + box refinement

log10ðL2Þ Rate log10ðL1Þ Rate log10ðL2Þ Rate log10ðL1Þ Rate

1/10 �1:858 �0:934 �1:750 �0:859
1/15 �2:325 2.65 �1:320 2.19 �2:255 2.87 �1:332 2.69
1/20 �2:680 2.83 �1:678 2.87 �2:618 2.90 �1:678 2.77
1/30 �3:190 2.90 �2:158 2.72 �3:126 2.89 �2:125 2.54
1/40 �3:538 2.78 �2:404 1.97 �3:465 2.72 �2:398 2.18

Average rate 2.81 2.51 2.86 2.57

Table 6
Convergence results for the grid with a central box refinement region.

N Advection problem Stationary vortex problem

log10ðL2Þ Rate log10ðL1Þ Rate log10ðL2Þ Rate log10ðL1Þ Rate

24 �1:766 �0:957 �1:757 �1:444
30 �2:006 2.48 �1:102 1.49 �2:179 4.35 �1:895 4.65
48 �2:568 2.75 �1:446 1.69 �3:041 4.22 �2:661 3.75
60 �2:808 2.48 �1:595 1.53 �3:427 3.99 �2:910 2.57
120 �3:605 2.65 �2:226 2.10 �4:418 3.29 �3:403 1.64

Average rate 2.64 1.81 3.82 2.80
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A better convergence result is obtained for the case of the vortex on the box refinement grid. As shown in Table 6, near-
fourth-order convergence is seen, at least in the L2-norm. For comparison, results for the advection problem on the same grid
are shown alongside, where near-third-order L2 convergence is seen as in Table 4. Promisingly for future adaptive use of the
interface scheme, the vortex problem on the box refinement grid is the only case where the refinement conformed to the
feature of interest (see the relative positions of the vortex core and the box in Fig. 11). The advection examples represent
something of a worst case, where refinement occurs independently of the discretized field. In practice, near-fourth-order
convergence is achievable with the present scheme when an adaptive refinement strategy is used, i.e., by moving the regions
of refinement to always cover the steepest gradients of the solution. Doing so minimizes the truncation error at the inter-
faces and leads to convergence performance that should be similar to or better than that seen in the test problems. This
is, in fact, the original idea behind AMR and it is the only reasonable manner in which to use the present schemes.

6. Conclusions

Nondissipative energy-stable interface schemes have been developed for the three distinct interior geometries encoun-
tered in a 2-D patch-refined grid. By construction, each satisfies the summation-by-parts condition, which was shown to
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guarantee stability of the semidiscrete form of the partial differential equation in the linear case. For a fourth-order explicit
interior finite-difference scheme, a locally third-order edge interface closure was presented, while at the convex and concave
corners, closure was achieved only by the presence of first and second order-accurate nodes in the stencils.

Implementation of the interface closure requires only the difference matrices bDx and bDy, and these are available in the
supplementary material for each geometry. Numerical experiments using these interface schemes on three different grids
show that the low-order points reduce the convergence rate by approximately one order compared to the interior accuracy.
Similar results are seen with a nonlinear vortex problem using the Euler equations. This decrease in convergence rate is the
cost of achieving a stable scheme without artificial dissipation. The cost is much reduced, however, if the refinement con-
forms to the numerical solution, as would be the case in a practical implementation.

The ultimate goal of this effort is to develop a stable interface treatment for fully three-dimensional patch-refined grids,
but extension of the 2-D results is not necessarily straightforward. The hanging node topology of the 3-D grid will include
faces, edges and corners, each of which requires a separate solution. We speculate that further reductions in order of accu-
racy may result at three-dimensional edges and corners, though the actual order reduction is unknown at this point. The 3-D
stencils are also likely to be large and computationally demanding to derive.
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Appendix A. Alternative edge interface formulation

For the edge interface, an alternative formulation to that shown in Section 4.3 is available. Consider solving (1) now on a
grid of infinite extent with an interface at x ¼ 0, such that the left-half plane is refined by ratios rx and ry in the x- and y-
directions, respectively, relative to the right-half plane. Thus Xf ¼ fðx; yÞ 2 x < 0g, and Xc ¼ fðx; yÞ 2 x > 0g, and a grid is ob-
tained that contains only the edge interface geometry from Fig. 3. Note that each cell row of the grid is identical in this case,
so nodes may be identified by a global index pair ði; jÞ, where i 2 N identifies the node position in the coarse row j, with the
indexing chosen such that ð0; jÞ is the coarse node closest to the interface at x ¼ 0. A convenient choice for the numbering
within the fine part of each row is the ‘‘N”-counting scheme, shown in Fig. 12. With the familiar refinement ratios
rx ¼ ry ¼ 2, the node locations ðx; yÞi;j are given by
ðx; yÞi;j ¼
ð½i=2�Dx; ½2jþ 1=2�DyÞ; if i < 0 and odd;
ð½i=2þ 1=2�Dx; ½2j� 1=2�DyÞ; if i < 0 and even;
ð½2iþ 1�Dx;2jDyÞ; i P 0;

8><>: ð55Þ
where Dx and Dy are the refined grid discretizations.
This node-numbering scheme leads naturally to a formulation of the interface problem in terms of fourth-order tensors.

Here, using the difference tensor Dx;ijkl as an example, the first pair of indices relate to the rows of the matrix Dx (the indepen-
dent indices), and the second pair to the columns of Dx (the dependent indices). Within each index pair, the first index refers to
the node number ðiÞ and the second to the row ðjÞ. This can be done only because each row of this grid is identical; for any
refinement where @Xf has corners, there is implicitly a change in the form of the rows and this formulation cannot be used.

For the interface scheme from Section 4.3, for a given grid row j of the edge-interface grid, the dependence set extends
only to rows fj� 1; j; jþ 1g. Consequently, the matrices for the interface stencil may be written as
bDx;ijkl ¼ bD�1

x;ikdj�1;l þ bD0
x;ikdj;l þ bDþ1

x;ikdjþ1;l; ð56ÞbDy;ijkl ¼ bD�1
y;ikdj�1;l þ bD0

y;ikdj;l þ bDþ1
y;ikdjþ1;l; ð57ÞbHijkl ¼ bH0

ikdj;l; ð58Þ
where dj;l is the Kronecker delta, and each of bD�1
x ; bD0

x ;
bDþ1

x ; bD�1
y ; bD0

y ;
bDþ1

y and bH0 are second-order matrices of finite extent.
In the case of the stencil from Fig. 6, all are 8� 8 matrices, except bD0

x , which is 8� 14. The accuracy conditions (41) and (42)
are constructed as before, in this case over the full matrices bDx and bDy, and the stability conditions (35) and (36) expand to
Fig. 12. The ‘‘N”-counting scheme for refined regions of an infinite grid with an interface at x ¼ 0, for a row j.
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bH0
im
bD�1

x;mk þ bH0
mk
bDþ1

x;mi ¼ 0; ð59ÞbH0
im
bD0

x;mk þ bH0
mk
bD0

x;mi ¼ 0; ð60ÞbH0
im
bDþ1

x;mk þ bH0
mk
bD�1

x;mi ¼ 0; ð61Þ
in x, and similarly in y. The resulting edge solution is identical to that of Section 4.3.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jcp.2009.04.010.
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